
Мощность по своей сути является скоростью выполнения работы. Чем больше мощность совершаемой работы, тем больше работы выполняется за единицу времени.
Среднее значение мощности — это работа, выполненная за единицу времени.
Величина мощности прямо пропорциональна величине совершённой работы (A) и обратно пропорциональна времени (t), за которое работа была совершена.
Мощность (N) определяют по формуле:
Единицей измерения мощности в системе (СИ) является (Ватт) (русское обозначение — (Вт), международное — (W)).
Для определения мощности двигателя автомобилей и других транспортных средств используют исторически более древнюю единицу измерения — лошадиная сила (л.с.), 1 л.с. = 736 Вт.
Пример:
Мощность двигателя автомобиля равна примерно (90 л.с. = 66240 Вт).
Мощность автомобиля или другого транспортного средства можно рассчитать, если известна сила тяги автомобиля (F) и скорость его движения (v).
N=F⋅v
Эту формулу получают, преобразуя основную формулу определения мощности.
Ни одно устройство не способно использовать (100) % от начально подведённой к нему энергии на совершение полезной работы. Поэтому важной характеристикой любого устройства является не только мощность, но и коэффициент полезного действия, который показывает, насколько эффективно используется энергия, подведённая к устройству.
Пример:
Для того чтобы автомобиль двигался, должны вращаться колёса. А для того чтобы вращались колёса, двигатель должен приводить в движение кривошипно-шатунный механизм (механизм, который возвратно-поступательное движение поршня двигателя преобразует во вращательное движение колёс). При этом приводятся во вращение шестерни и большая часть энергии выделяется в виде тепла в окружающее пространство, в результате чего происходит потеря подводимой энергии. Коэффициент полезного действия двигателя автомобиля находится в пределах (40 — 45) %. Таким образом, получается, что только около (40) % от всего бензина, которым заправляют автомобиль, идёт на совершение необходимой нам полезной работы — перемещение автомобиля.
Если мы заправим в бак автомобиля (20) литров бензина, тогда только (8) литров будут расходоваться на перемещение автомобиля, а (12) литров сгорят без совершения полезной работы.
Коэффициент полезного действия обозначается буквой греческого алфавита («эта»)
η
, он является отношением полезной мощности (N) к полной или общей мощности
Nполная
.
Для его определения используют формулу:
η=NNполная
. Поскольку по определению коэффициент полезного действия является отношением мощностей, единицы измерения он не имеет.
Часто его выражают в процентах. Если коэффициент полезного действия выражают в процентах, тогда используют формулу:
η=NNполная⋅100%
.
Так как мощность является работой, проделанной за единицу времени, тогда коэффициент полезного действия можно выразить как отношение полезной проделанной работы (A) к общей или полной проделанной работе
Aполная
. В этом случае формула для определения коэффициента полезного действия будет выглядеть так:
Коэффициент полезного действия всегда меньше (1), или (100) % (
η
< 1, или
η
< (100) %).
Механическая работа. Единицы работы.
В обыденной жизни под понятием «работа» мы понимаем всё.
В физике понятие работа несколько иное. Это определенная физическая величина, а значит, ее можно измерить. В физике изучается прежде всего механическая работа.
Рассмотрим примеры механической работы.
Поезд движется под действием силы тяги электровоза, при этом совершается механическая работа. При выстреле из ружья сила давления пороховых газов совершает работу — перемещает пулю вдоль ствола, скорость пули при этом увеличивается.
Из этих примеров видно, что механическая работа совершается, когда тело движется под действием силы. Механическая работа совершается и в том случае, когда сила, действуя на тело (например, сила трения), уменьшает скорость его движения.
Желая передвинуть шкаф, мы с силой на него надавливаем, но если он при этом в движение не приходит, то механической работы мы не совершаем. Можно представить себе случай, когда тело движется без участия сил (по инерции), в этом случае механическая работа также не совершается.
Итак, механическая работа совершается, только когда на тело действует сила, и оно движется.
Нетрудно понять, что чем большая сила действует на тело и чем длиннее путь, который проходит тело под действием этой силы, тем большая совершается работа.
Механическая работа прямо пропорциональна приложенной силе и прямо пропорциональна пройденному пути.
Поэтому, условились измерять механическую работу произведением силы на путь, пройденный по этому направлению этой силы:
работа = сила × путь
или
A = Fs,
где А — работа, F — сила и s — пройденный путь.
За единицу работы принимается работа, совершаемая силой в 1Н, на пути, равном 1 м.
Единица работы — джоуль (Дж) названа в честь английского ученого Джоуля. Таким образом,
1 Дж = 1Н · м.
Используется также килоджоули (кДж) .
1 кДж = 1000 Дж.
Формула А = Fs применима в том случае, когда сила F постоянна и совпадает с направлением движения тела.
Если направление силы совпадает с направлением движения тела, то данная сила совершает положительную работу.
Если же движение тела происходит в направлении, противоположном направлению приложенной силы, например, силы трения скольжения, то данная сила совершает отрицательную работу.
A = -Fs.
Если направление силы, действующей на тело, перпендикулярно направлению движения, то эта сила работы не совершает, работа равна нулю:
A = 0.
В дальнейшем, говоря о механической работе, мы будем кратко называть ее одним словом — работа.
Пример. Вычислите работу, совершаемую при подъеме гранитной плиты объемом 0,5 м3 на высоту 20 м. Плотность гранита 2500 кг/м3.
Запишем условие задачи, и решим ее.
Дано:
V = 0,5 м3
ρ = 2500 кг/м3
h = 20 м
Решение:
A = Fs,
где F -сила, которую нужно приложить, чтобы равномерно поднимать плиту вверх. Эта сила по модулю равна силе тяж Fтяж, действующей на плиту, т. е. F = Fтяж. А силу тяжести можно определить по массе плиты: Fтяж = gm. Массу плиты вычислим, зная ее объем и плотность гранита: m = ρV; s = h, т. е. путь равен высоте подъема.
Итак, m = 2500 кг/м3 · 0,5 м3 = 1250 кг.
F = 9,8 Н/кг · 1250 кг ≈ 12 250 Н.
A = 12 250 Н · 20 м = 245 000 Дж = 245 кДж.
А — ?
Ответ: А =245 кДж.
Рычаги.Мощность.Энергия
На совершение одной и той же работы различным двигателям требуется разное время. Например, подъемный кран на стройке за несколько минут поднимает на верхний этаж здания сотни кирпичей. Если бы эти кирпичи перетаскивал рабочий, то ему для этого потребовалось бы несколько часов. Другой пример. Гектар земли лошадь может вспахать за 10-12 ч, трактор же с многолемешным плугом (лемех — часть плуга, подрезающая пласт земли снизу и передающая его на отвал; многолемешный — много лемехов), эту работу выполнит на 40-50 мин.
Ясно, что подъемный кран ту же работу совершает быстрее, чем рабочий, а трактор — быстрее чем лошадь. Быстроту выполнения работы характеризуют особой величиной, называемой мощностью.
Мощность равна отношению работы ко времени, за которое она была совершена.
Чтобы вычислить мощность, надо работу разделить на время, в течение которого совершена эта работа.
мощность = работа/время.
или
N = A/t,
где N — мощность, A — работа, t — время выполненной работы.
Мощность — величина постоянная, когда за каждую секунду совершается одинаковая работа, в других случаях отношение A/t определяет среднюю мощность:
Nср = A/t .
За единицу мощности приняли такую мощность, при которой в 1 с совершается работа в Дж.
Эта единица называется ваттом (Вт) в честь еще одного английского ученого Уатта.
Итак,
1 ватт = 1 джоуль/ 1 секунда, или 1 Вт = 1 Дж/с .
Ватт (джоуль в секунду) — Вт ( 1 Дж/с).
В технике широко используется более крупные единицы мощности — киловатт (кВт), мегаватт (МВт) .
1 МВт = 1 000 000 Вт
1 кВт = 1000 Вт
1 мВт = 0,001 Вт
1 Вт = 0,000001 МВт
1 Вт = 0,001 кВт
1 Вт = 1000 мВт
Пример. Найти мощность потока воды, протекающей через плотину, если высота падения воды 25 м, а расход ее — 120 м3 в минуту.
Запишем условие задачи и решим ее.
Дано:
h = 25 м
V = 120 м3
ρ = 1000 кг/м3
t = 60 c
g = 9,8 м/с2
Решение:
Масса падающей воды: m = ρV,
m = 1000 кг/м3 · 120 м3 = 120 000 кг (12 · 104 кг).
Сила тяжести, действующая на воду:
F = gm,
F = 9.8 м/с2 · 120 000 кг ≈ 1 200 000 Н (12 · 105 Н)
Работа, совершаемая потоком в минуту:
A = Fh,
А — 1 200 000 Н · 25 м = 30 000 000 Дж (3 · 107 Дж).
Мощность потока: N = A/t,
N = 30 000 000 Дж / 60 с = 500 000 Вт = 0,5 МВт.
N — ?
Ответ: N = 0.5 МВт.
Различные двигатели имеют мощности от сотых и десятых долей киловатта (двигатель электрической бритвы, швейной машины) до сотен тысяч киловатт (водяные и паровые турбины).
Таблица 5.
Мощность некоторых двигателей, кВт.
Вид транспортного средства | Мощность двигателя | Вид транспортного средства | Мощность двигателя |
---|---|---|---|
Автомобиль «Волга — 3102» | 70 | Ракета-носитель космического корабля | |
Самолет Ан-2 | 740 | ||
Дизель тепловоза ТЭ10Л | 2200 | «Восток» | 15 000 000 |
Вертолет Ми — 8 | 2×1100 | «Энергия» | 125 000 000 |
На каждом двигателе имеется табличка (паспорт двигателя), на которой указаны некоторые данные о двигателе, в том числе и его мощность.
Мощность человека при нормальный условиях работы в среднем равна 70-80 Вт. Совершая прыжки, взбегая по лестнице, человек может развивать мощность до 730 Вт, а в отдельных случаях и еще бóльшую.
Зная мощность двигателя, можно рассчитать работу, совершаемую этим двигателем в течение какого-нибудь промежутка времени.
Из формулы N = A/t следует, что
A = Nt.
Чтобы вычислить работу, необходимо мощность умножить на время, в течение которого совершалась эта работа.
Пример. Двигатель комнатного вентилятора имеет мощность 35 Вт. Какую работу он совершает за 10 мин?
Запишем условие задачи и решим ее.
Дано:
N = 35 Вт
t = 10 мин
A = ?
Си 600 с.
Решение:
A = Nt,
A = 35 Вт * 600с = 21 000 Вт* с = 21 000 Дж = 21 кДж.
Ответ A = 21 кДж.
Простые механизмы.
С незапамятных времен человек использует для совершения механической работы различные приспособления.
Каждому известно, что тяжелый предмет (камень, шкаф, станок), который невозможно сдвинуть руками, можно сдвинуть с помощью достаточно длинной палки — рычага.
На данный момент считается, что с помощью рычагов три тысячи лет назад при строительстве пирамид в Древнем Египте передвигали и поднимали на большую высоту тяжелые каменные плиты.
Во многих случаях, вместо того, чтобы поднимать тяжелый груз на некоторую высоту, его можно вкатывать или втаскивать на ту же высоту по наклонной плоскости или поднимать с помощью блоков.
Приспособления, служащие для преобразования силы, называются механизмами.
К простым механизмам относятся: рычаги и его разновидности — блок, ворот; наклонная плоскость и ее разновидности — клин, винт. В большинстве случаев простые механизмы применяют для того, чтобы получить выигрыш в силе, т. е. увеличить силу, действующую на тело, в несколько раз.
Простые механизмы имеются и в бытовых, и во всех сложных заводских и фабричных машинах, которые режут, скручивают и штампуют большие листы стали или вытягивают тончайшие нити, из которых делаются потом ткани. Эти же механизмы можно обнаружить и в современных сложных автоматах, печатных и счетных машинах.
Рычаг. Равновесие сил на рычаге.
Рассмотрим самый простой и распространенный механизм — рычаг.
Рычаг представляет собой твердое тело, которое может вращаться вокруг неподвижной опоры.
На рисунках показано, как рабочий для поднятия груза в качестве рычага, использует лом. В первом случае рабочий с силой F нажимает на конец лома B, во втором — приподнимает конец B.
Рабочему нужно преодолеть вес груза P — силу, направленную вертикально вниз. Он поворачивает для этого лом вокруг оси, проходящей через единственную неподвижную точку лома — точку его опоры О. Сила F, с которой рабочий действует на рычаг, меньше силы P, таким образом, рабочий получает выигрыш в силе. При помощи рычага можно поднять такой тяжелый груз, который своими силами поднять нельзя.
На рисунке изображен рычаг, ось вращения которого О (точка опоры) расположена между точками приложения сил А и В. На другом рисунке показана схема этого рычага. Обе силы F1 и F2, действующие на рычаг, направлены в одну сторону.
Кратчайшее расстояние между точкой опоры и прямой, вдоль которой действует на рычаг сила, называется плечом силы.
- Чтобы найти плечо силы, надо из точки опоры опустить перпендикуляр на линию действия силы.
Длина этого перпендикуляра и будет плечом данной силы. На рисунке показано, что ОА — плечо силы F1; ОВ — плечо силы F2 . Силы, действующие на рычаг могут повернуть его вокруг оси в двух направлениях: по ходу или против хода часовой стрелки. Так, сила F1 вращает рычаг по ходу часовой стрелки, а сила F2 вращает его против часовой стрелки.
Условие, при котором рычаг находится в равновесии под действием приложенных к нему сил, можно установить на опыте. При этом надо помнить, что результат действия силы, зависит не только от ее числового значения (модуля), но и от того, в какой точке она приложена к телу, или как направлена.
К рычагу (см рис.) по обе стороны от точки опоры подвешиваются различные грузы так, что каждый раз рычаг оставался в равновесии. Действующие на рычаг силы, равны весам этих грузов. Для каждого случая измеряются модули сил и их плечи. Из опыта изображенного на рисунке 154, видно, что сила 2 Н уравновешивает силу 4 Н. При этом, как видно из рисунка, плечо меньшей силы в 2 раза больше плеча большей силой.
На основании таких опытов было установлено условие (правило) равновесия рычага.
Рычаг находится в равновесии тогда, когда силы, действующие на него, обратно пропорциональны плечам этих сил.
Это правило можно записать в виде формулы:
F1/F2 = l2/l1,
где F1 и F2— силы, действующие на рычаг, l1 и l2, — плечи этих сил (см. рис.).
Правило равновесия рычага было установлено Архимедом около 287 — 212 гг. до н. э. (но ведь в прошлом параграфе говорилось, что рычаги использовались египтянами? Или тут важную роль играет слово «установлено»?)
Из этого правила следует, что меньшей силой можно уравновесить при помощи рычага бóльшую силу. Пусть одно плечо рычага в 3 раза больше другого (см рис.). Тогда, прикладывая в точке В силу, например, в 400 Н, можно поднять камень весом 1200 Н. Что0бы поднять еще более тяжелый груз, нужно увеличить длину плеча рычага, на которое действует рабочий.
Пример. С помощью рычага рабочий поднимает плиту массой 240 кг (см рис. 149). Какую силу прикладывает он к большему плечу рычага, равному 2,4 м, если меньшее плечо равно 0,6 м?
Запишем условие задачи, и решим ее.
Дано:
m = 240 кг
g =9,8 Н/кг
l1 = 2,4 м
l2 =0,6 м
Решение:
По правилу равновесия рычага F1/F2 = l2/l1, откуда F1 = F2 l2/l1, где F2 = Р — вес камня. Вес камня asd = gm, F = 9,8 Н · 240 кг ≈ 2400 Н
Тогда, F1 = 2400 Н · 0,6/2,4 = 600 Н.
F — ?
Ответ : F1 = 600 Н.
В нашем примере рабочий преодолевает силу 2400 Н, прикладывая к рычагу силу 600 Н. Но при этом плечо, на которое действует рабочий, в 4 раза длиннее того, на которое действует вес камня (l1 : l2 = 2,4 м : 0,6 м = 4).
Применяя правило рычага, можно меньшей силой уравновесить бóльшую силу. При этом плечо меньшей силы должно быть длиннее плеча большей силы.
Момент силы.
Вам уже известно правило равновесия рычага:
F1 / F2 = l2 / l1,
Пользуясь свойством пропорции (произведение ее крайних членов, равно произведению ее средних членов), запишем его в таком виде:
F1l1 = F2l2 .
В левой части равенства стоит произведение силы F1 на ее плечо l1, а в правой — произведение силы F2 на ее плечо l2 .
Произведение модуля силы, вращающей тело, на ее плечо называется моментом силы; он обозначается буквой М. Значит,
M = Fl.
Рычаг находится в равновесии под действием двух сил, если момент силы, вращающий его по часовой стрелке, равен моменту силы, вращающей его против часовой стрелки.
Это правило, называемое правилом моментов, можно записать в виде формулы:
М1 = М2
Действительно, в рассмотренном нами опыте, (§ 56) действующие силы были равны 2 Н и 4 Н, их плечи соответственно составляли 4 и 2 давления рычага, т. е. моменты этих сил одинаковы при равновесии рычага.
Момент силы, как и всякая физическая величина, может быть измерена. За единицу момента силы принимается момент силы в 1 Н, плечо которой ровно 1 м.
Эта единица называется ньютон-метр (Н · м).
Момент силы характеризует действие силы, и показывает, что оно зависит одновременно и от модуля силы, и от ее плеча. Действительно, мы уже знаем, например, что действие силы на дверь зависит и от модуля силы, и от того, где приложена сила. Дверь тем легче повернуть, чем дальше от оси вращения приложена действующая на нее сила. Гайку, лучше отвернуть длинным гаечным ключом, чем коротким. Ведро тем легче поднять из колодца, чем длиннее ручка вóрота, и т. д.
Рычаги в технике, быту и природе.
Правило рычага (или правило моментов) лежит в основе действия различного рода инструментов и устройств, применяемых в технике и быту там, где требуется выигрыш в силе или в пути.
Выигрыш в силе мы имеем при работе с ножницами. Ножницы — это рычаг (рис), ось вращения которого, происходит через винт, соединяющий обе половины ножниц. Действующей силой F1 является мускульная сила руки человека, сжимающего ножницы. Противодействующей силой F2 — сила сопротивления такого материала, который режут ножницами. В зависимости от назначения ножниц их устройство бывает различным. Конторские ножницы, предназначенные для резки бумаги, имеют длинные лезвия и почти такой же длины ручки. Для резки бумаги не требуется большой силы, а длинным лезвием удобнее резать по прямой линии. Ножницы для резки листового металла (рис.) имеют ручки гораздо длиннее лезвий, так как сила сопротивления металла велика и для ее уравновешивания плечо действующей силы приходится значительно увеличивать. Еще больше разница между длиной ручек и расстоянии режущей части и оси вращения в кусачках (рис.), предназначенных для перекусывания проволоки.
Рычаги различного вида имеются у многих машин. Ручка швейной машины, педали или ручной тормоз велосипеда, педали автомобиля и трактора, клавиши пианино — все это примеры рычагов, используемых в данных машинах и инструментах.
Примеры применения рычагов — это рукоятки тисков и верстаков, рычаг сверлильного станка и т. д.
На принципе рычага основано действие и рычажных весов (рис.). Учебные весы, изображенные на рисунке 48 (с. 42), действуют как равноплечий рычаг. В десятичных весах плечо, к которому подвешена чашка с гирями, в 10 раз длиннее плеча, несущего груз. Это значительно упрощает взвешивание больших грузов. Взвешивая груз на десятичных весах, следует умножить массу гирь на 10.
Устройство весов для взвешивания грузовых вагонов автомобилей также основано на правиле рычага.
Рычаги встречаются также в разных частях тела животных и человека. Это, например, руки, ноги, челюсти. Много рычагов можно найти в теле насекомых (прочитав книгу про насекомых и строение их тела), птиц, в строении растений.
Применение закона равновесия рычага к блоку.
Блок представляет собой колесо с желобом, укрепленное в обойме. По желобу блока пропускается веревка, трос или цепь.
Неподвижным блоком называется такой блок, ось которого закреплена, и при подъеме грузов не поднимается и не опускается (рис).
Неподвижный блок можно рассматривать как равноплечий рычаг, у которого плечи сил равны радиусу колеса (рис): ОА = ОВ = r. Такой блок не дает выигрыша в силе. (F1 = F2), но позволяет менять направление действие силы.
Подвижный блок — это блок. ось которого поднимается и опускается вместе с грузом (рис.). На рисунке показан соответствующий ему рычаг: О — точка опоры рычага, ОА — плечо силы Р и ОВ — плечо силы F. Так как плечо ОВ в 2 раза больше плеча ОА, то сила F в 2 раза меньше силы Р:
F = P/2 .
Таким образом, подвижный блок дает выигрыш в силе в 2 раза.
Это можно доказать и пользуясь понятием момента силы. При равновесии блока моменты сил F и Р равны друг другу. Но плечо силы F в 2 раза больше плеча силы Р, а, значит, сама сила F в 2 раза меньше силы Р.
Обычно на практике применяют комбинацию неподвижного блока с подвижным (рис.). Неподвижный блок применяется только для удобства. Он не дает выигрыша в силе, но изменяет направление действия силы. Например, позволяет поднимать груз, стоя на земле. Это пригождается многим людям или рабочим. Тем не менее, он даёт выигрыш в силе в 2 раза больше обычного!
Равенство работ при использовании простых механизмов. «Золотое правило» механики.
Рассмотренные нами простые механизмы применяются при совершении работы в тех случаях, когда надо действием одной силы уравновесить другую силу.
Естественно, возникает вопрос: давая выигрыш в силе или пути, не дают ли простые механизмы выигрыша в работе? Ответ на поставленный вопрос можно получить из опыта.
Уравновесив на рычаге две какие-нибудь разные по модулю силы F1 и F2 (рис.), приводим рычаг в движение. При этом оказывается, что за одно и то же время точка приложения меньшей силы F2 проходит больший путь s2 , а точка приложения большей силы F1 — меньший путь s1. Измерив эти пути и модули сил, находим, что пути, пройденные точками приложения сил на рычаге, обратно пропорциональны силам:
s1 / s2 = F2 / F1.
Таким образом, действуя на длинное плечо рычага, мы выигрываем в силе, но при этом во столько же раз проигрываем в пути.
Произведение силы F на путь s есть работа. Наши опыты показывают, что работы, совершаемые силами, приложенными к рычагу, равны друг другу:
F1 s1 = F2 s2, т. е. А1 = А2.
Итак, при использовании рычага выигрыша в работе не получится.
Пользуясь рычагом, мы можем выиграть или в силе, или в расстоянии. Действуя же силой на короткое плечо рычага, мы выигрываем в расстоянии, но во столько же раз проигрываем в силе.
Существует легенда, что Архимед, восхищенный открытием правила рычага, воскликнул: «Дайте мне точку опоры, и я переверну Землю!».
Конечно, Архимед не мог бы справиться с такой задачей, если бы даже ему и дали бы точку опоры (которая должна была бы быть вне Земли) и рычаг нужной длины.
Для подъема земли всего на 1 см длинное плечо рычага должно было бы описать дугу огромной длины. Для перемещения длинного конца рычага по этому пути, например, со скоростью 1 м/с, потребовались бы миллионы лет!
Не дает выигрыша в работе и неподвижный блок, в чем легко убедиться на опыте (см. рис.). Пути, проходимые точками приложения сил F и F, одинаковы, одинаковы и силы, а значит, одинаковы и работы.
Можно измерить и сравнить между собой работы, совершаемые с помощью подвижного блока. Чтобы при помощи подвижного блока поднять груз на высоту h, необходимо конец веревки, к которому прикреплен динамометр, как показывает опыт (рис.), переместить на высоту 2h.
Таким образом, получая выигрыш в силе в 2 раза, проигрывают в 2 раза в пути, следовательно, и подвижный блок, на дает выигрыша в работе.
Многовековая практика показала, что ни один из механизмов не дает выигрыш в работе. Применяют же различные механизмы для того, чтобы в зависимости от условий работы выиграть в силе или в пути.
Уже древним ученым было известно правило, применимое ко всем механизмом: во сколько раз выигрываем в силе, во столько же раз проигрываем в расстоянии. Это правило назвали «золотым правилом» механики.
Коэффициент полезного действия механизма.
Рассматривая устройство и действие рычага, мы не учитывали трение, а также вес рычага. в этих идеальных условиях работа, совершенная приложенной силой (эту работу мы будем называть полной), равна полезной работе по подъему грузов или преодоления какого — либо сопротивления.
На практике совершенная с помощью механизма полная работа всегда несколько больше полезной работы.
Часть работы совершается против силы трения в механизме и по перемещению его отдельных частей. Так, применяя подвижный блок, приходится дополнительно совершать работу по подъему самого блока, веревки и по определению силы трения в оси блока.
Какой мы механизм мы не взяли, полезная работа, совершенная с его помощью, всегда составляет лишь часть полной работы. Значит, обозначив полезную работу буквой Ап, полную(затраченную) работу буквой Аз, можно записать:
Ап < Аз или Ап / Аз < 1.
Отношение полезной работы к полной работе называется коэффициентом полезного действия механизма.
Сокращенно коэффициент полезного действия обозначается КПД.
КПД = Ап / Аз.
КПД обычно выражается в процентах и обозначается греческой буквой η, читается он как «эта»:
η = Ап / Аз · 100%.
Пример: На коротком плече рычага подвешен груз массой 100 кг. Для его подъема к длинному плечу приложена сила 250 Н. Груз подняли на высоту h1 = 0,08 м, при этом точка приложения движущей силы опустилась на высоту h2 = 0,4 м. Найти КПД рычага.
Запишем условие задачи и решим ее.
Дано:
m = 240
g = 9,8 Н/кг
F = 250 Н
h1 = 0.08 м
h2 =0,04 м
Решение:
η = Ап / Аз · 100%.
Полная (затраченная) работа Аз = Fh2.
Полезная работа Ап = Рh1
Р = gm.
Р = 9,8 · 100 кг ≈ 1000 Н.
Ап = 1000 Н · 0,08 = 80 Дж.
Аз = 250 Н · 0,4 м = 100 Дж.
η = 80 Дж/100 Дж · 100% = 80%.
η — ?
Ответ : η = 80%.
Но «золотое правило» выполняется и в этом случае. Часть полезной работы — 20% ее-расходуется на преодоление трения в оси рычага и сопротивления воздуха, а также на движение самого рычага.
КПД любого механизма всегда меньше 100%. Конструируя механизмы, люди стремятся увеличить их КПД. Для этого уменьшаются трение в осях механизмов и их вес.
Энергия.
На заводах и фабриках, станки и машины приводятся в движения с помощью электродвигателей, которые расходуют при этом электрическую энергию (отсюда и название).
Автомобили и самолеты тепловозы и теплоходы, работают, расходуя энергию сгорающего топлива, гидротурбины — энергию падающей с высоты воды. Да и сами мы, чтобы жить, учиться и работать, возобновляем свой запас энергии при помощи пищи, которую мы едим.
Слово «энергия» употребляется нередко и в быту. Так, например, людей, которые могут быстро выполнять большую работу, мы называем энергичными, обладающими большой энергией. Что же такое энергия? Чтобы ответить на этот вопрос, рассмотрим примеры.
Сжатая пружина (рис), распрямляясь, совершить работу, поднять на высоту груз, или заставить двигаться тележку.
Поднятый над землей неподвижный груз не совершает работы, но если этот груз упадет, он может совершить работу (например, может забить в землю сваю).
Способностью совершить работу обладает и всякое движущееся тело. Так, скатившийся с наклонной плоскости стальной шарик А (рис), ударившись о деревянный брусок В, передвигает его на некоторое расстояние. При этом совершается работа.
Если тело или несколько взаимодействующих между собой тел (система тел) могут совершить работу, говорится, что они обладают энергией.
Энергия — физическая величина, показывающая, какую работу может совершить тело (или несколько тел). Энергия выражается в системе СИ в тех же единицах, что и работу, т. е. в джоулях.
Чем большую работу может совершить тело, тем большей энергией оно обладает.
При совершении работы энергия тел изменяется. Совершенная работа равна изменению энергии.
Потенциальная и кинетическая энергия.
Потенциальной (от лат. потенция — возможность) энергией называется энергия, которая определяется взаимным положением взаимодействующих тел и частей одного и того же тела.
Потенциальной энергией, например, обладает тело, поднятое относительно поверхности Земли, потому что энергия зависит от взаимного положения его и Земли. и их взаимного притяжения. Если считать потенциальную энергию тела, лежащего на Земле, равной нулю, то потенциальная энергия тела, поднятого на некоторую высоту, определится работой, которую совершит сила тяжести при падении тела на Землю. Обозначим потенциальную энергию тела Еп, поскольку Е = А , а работа, как мы знаем, равна произведению силы на путь, то
А = Fh,
где F — сила тяжести.
Значит, и потенциальная энергия Еп равна:
Е = Fh, или Е = gmh,
где g — ускорение свободного падения, m — масса тела, h — высота, на которую поднято тело.
Огромной потенциальной энергией обладает вода в реках, удерживаемая плотинами. Падая вниз, вода совершает работу, приводя в движение мощные турбины электростанций.
Потенциальную энергию молота копра (рис.) используют в строительстве для совершению работы по забиванию свай.
Открывая дверь с пружиной, совершается работа по растяжению (или сжатию) пружины. За счет приобретенной энергии пружина, сокращаясь (или распрямляясь), совершает работу, закрывая дверь.
Энергию сжатых и раскрученных пружин используют, например, в ручных часах, разнообразных заводных игрушках и пр.
Потенциальной энергией обладает всякое упругое деформированное тело. Потенциальную энергию сжатого газа используют в работе тепловых двигателей, в отбойных молотках, которые широко применяют в горной промышленности, при строительстве дорог, выемке твердого грунта и т. д.
Энергия, которой обладает тело вследствие своего движения, называется кинетической (от греч. кинема — движение) энергией.
Кинетическая энергия тела обозначается буквой Ек .
Движущаяся вода, приводя во вращение турбины гидроэлектростанций, расходует свою кинетическую энергию и совершает работу. Кинетической энергией обладает и движущийся воздух — ветер.
От чего зависит кинетическая энергия? Обратимся к опыту (см. рис.). Если скатывать шарик А с разных высот, то можно заметить, что чем с большей высоты скатывается шарик, тем больше его скорость и тем дальше он продвигает брусок, т. е. совершает большую работу. Значит, кинетическая энергия тела зависит от его скорости.
За счет скорости большой кинетической энергией обладает летящая пуля.
Кинетическая энергия тела зависит и от его массы. Еще раз проделаем наш опыт, но будем скатывать с наклонной плоскости другой шарик — большей массы. Брусок В передвинется дальше, т. е. будет совершена бóльшая работа. Значит, и кинетическая энергия второго шарика, больше, чем первого.
Чем больше масса тела и скорость, с которой он движется, тем больше его кинетическая энергия.
Для того чтобы определить кинетическую энергию тела, применяется формула:
Ек = mv^2 /2,
где m — масса тела, v — скорость движения тела.
Кинетическую энергию тел используют в технике. Удерживаемая плотиной вода обладает, как было уже сказано, большой потенциальной энергией. При падении с плотины вода движется и имеет такую же большую кинетическую энергию. Она приводит в движение турбину, соединенную с генератором электрического тока. За счет кинетической энергии воды вырабатывается электрическая энергия.
Энергия движущейся воды имеет большое значение в народном хозяйстве. Эту энергию используют с помощью мощных гидроэлектростанций.
Энергия падающей воды является экологически чистым источником энергии в отличие от энергии топлива.
Все тела в природе относительно условного нулевого значения обладают либо потенциальной, либо кинетической энергией, а иногда той и другой вместе. Например, летящий самолет обладает относительно Земли и кинетической и потенциальной энергией.
Мы познакомились с двумя видами механической энергии. Иные виды энергии (электрическая, внутренняя и др.) будут рассмотрены в других разделах курса физики.
Превращение одного вида механической энергии в другой.
В природе, технике и быту можно часто наблюдать превращение одного вида механической энергии в другой: потенциальную в кинетическую и кинетическую в потенциальную. Например, при падении воды с плотины ее потенциальная энергия превращается в кинетическую. В качающемся маятнике периодически эти виды энергии переходят друг в друга.
Явление превращения одного вида механической энергии в другой очень удобно наблюдать на приборе, изображенном на рисунке. Накручивая на ось нить, поднимают диск прибора. Диск, поднятый вверх, обладает некоторой потенциальной энергией. Если его отпустить, то он, вращаясь, начнет падать. По мере падения потенциальная энергия диска уменьшается, но вместе с тем возрастает его кинетическая энергия. В конце падения диск обладает таким запасом кинетической энергии, что может опять подняться почти до прежней высоты. (Часть энергии расходуется на работу против силы трения, поэтому диск не достигает первоначальной высоты.) Поднявшись вверх, диск снова падает, а затем снова поднимается. В этом опыте при движении диска вниз его потенциальная энергия превращается в кинетическую, а при движении вверх кинетическая превращается в потенциальную.
Превращение энергии из одного вида в другой происходит также при ударе двух каких-нибудь упругих тел, например резинового мяча о пол или стального шарика о стальную плиту.
Если поднять над стальной плитой стальной шарик (рис) и выпустить его из рук, он будет падать. По мере падения шарика его потенциальная энергия убывает, а кинетическая растет, так как увеличивается скорость движения шарика. При ударе шарика о плиту произойдет сжатие как шарика, так и плиты. Кинетическая энергия, которой шарик обладал, превратится в потенциальную энергию сжатой плиты и сжатого шарика. Затем благодаря действию упругих сил плита и шарик, примут свою первоначальную форму. Шарик отскочит от плиты, а их потенциальная энергия вновь превратится в кинетическую энергию шарика: шарик отскочит вверх со скоростью, почти равной скорости, которой обладал в момент удара о плиту. При подъеме вверх скорость шарика, а значит, и его кинетическая энергия уменьшаются, потенциальная энергия увеличивается. отскочив от плиты, шарик поднимается почти до той же высоты, с которой начал падать. В верхней точке подъема вся его кинетическая энергия вновь превратится в потенциальную.
Явления природы обычно сопровождается превращением одного вида энергии в другой.
Энергия может и передаваться от одного тела к другому. Так, например, при стрельбе из лука потенциальная энергия натянутой тетивы переходит в кинетическую энергию летящей стрелы.
Ссылки
- Уроки по физике за 7 класс по школьной программе
Содержание:
Работа, мощность и энергия:
Мы часто слышим от друзей: «Я сегодня выполнил большую работу: выучил наизусть стихотворение и решил пять задач по математике». Но с точки зрения физики никакой работы не совершено, даже если выучить наизусть целую поэму. Что же такое работа в физике?
В физике работа оценивает то, что вызвала сила, действуя на движущееся тело. Покажем это на примерах. Рассмотрите внимательно рисунок 216. Что общего в результатах действия силы тяжести на мяч (рис. 216, а), силы давления газа на пулю в пистолете (рис. 216, б) и силы упругости сжатой пружины на шарик (рис. 216, в) после пережигания нити? Все перечисленные силы вызывают разгон тел (мяча, пули, шарика), т. е. увеличение скорости движения.
Л может ли сила, действующая на движущееся тело, уменьшать его скорость? Подбросьте мяч и наблюдайте за его движением вверх (рис. 217). Теперь сила тяжести уменьшает скорость его движения. Во всех случаях, когда сила изменяет скорость движения (увеличивает или уменьшает), говорят, что сила совершает механическую работу.
Механическая работа является физической величиной. Ее значение можно рассчитать. Рассмотрим самый простой случай: направление силы совпадает с направлением движения. Например, идет разгон спортивных саней (рис. 218). Изменение скорости саней, а значит, и работа по их разгону зависят от значения действующей силы (силы спортсменов, разгоняющих сани) и от пройденного санями пути. Чем больше сила и путь, тем большая совершается работа. Этот вывод справедлив для всех движущихся под действием силы тел.
Таким образом, механическая работа — физическая величина, пропорциональная действующей на тело силе и пройденному пути.
Обозначим работу буквой А. Тогда, если направление силы совпадает с направлением движения тела,
Единицей работы в СИ является 1 джоуль (1 Дж). Названа она в честь известного английского физика Дж. П. Джоуля. Один джоуль — это работа, совершаемая силой 1 Н на пути 1 м.
1 джоуль = 1 ньютон • 1 метр.
Для измерения большой работы используют кратные джоулю единицы:
В случае малой работы применяются дольные единицы:
Из формулы работы следует, что если есть силы, но нет движения, то нет и работы. Например, сила тяжести, действующая на лежащий на столе мяч (рис. 219, а), работы не совершает, а в случае падающего мяча (рис. 219, б) — совершает.
Сила не всегда увеличивает скорость движения тела. Так, при движении мяча вверх (см. рис. 217) сила тяжести замедляет его движение. Аналогично при скольжении шайбы по льду сила трения уменьшает скорость движения шайбы. Работу силы (тяжести, трения) в подобных случаях считают отрицательной.
Но положительная и отрицательная работы могут совершаться одновременно и даже быть равными по абсолютной величине. В этом случае скорость движения постоянна. Например, электропоезд на данном участке пути движется равномерно. Это значит, что равнодействующая сил (тяги двигателя и сопротивления движению) равна нулю. По и сила тяги, и сила сопротивления совершают работу. Только работа силы тяги а силы сопротивления
Сумма же их равна 0, т. е.
Главные выводы:
- Механическая работа характеризует результат действия силы на движущееся тело и пропорциональна действующей на тело силе и пройденному телом пути.
- Силы, ускоряющие движение тела; совершают положительную работу.
- Силы, замедляющие движение тела, совершают отрицательную работу.
- Единица работы в СИ — 1 джоуль (1 Дж).
Пример решения задачи:
Подъемный кран равномерно поднимает с земли бетонную плиту массой m = 500 кг на один из этажей строящегося дома. Сила упругости троса при этом совершает работу А = 100 кДж. Определите, на какой этаж была поднята плита, если высота одного этажа Чему равна работа равнодействующей сил, приложенных к плите? Коэффициент
примите равным
Дано:
Решение:
При равномерном подъеме сила упругости троса равна силе тяжести, действующей на плиту:
Работа силы упругости Высота подъема
— число этажей. Тогда
Отсюда
Так как движение плиты равномерное, то равнодействующая сил, приложенных к ней, и работа
Ответ: плита поднята на 6-й этаж; работа равнодействующей сил
Полезная и совершённая работа
Оценивая работу машины, механизма и др., говорят об их коэффициенте полезного действия (КПД). Но что такое КПД? Что означают слова «полезного действия»? А что такое неполезное действие?
Рассмотрим ситуацию: идет уборка картофеля на поле. Фермер поднимает картофель в ведре в кузов автомашины (рис. 221), выгружает, а ведро опускает на землю. Механическую работу совершает мускульная сила фермера, поднявшего ведро массой, например, = 2,0 кг и картофель массой m = 10,0 кг на высоту h = 1,5 м. Какая работа здесь является полезной?
Цель фермера — погрузить в кузов картофель. Исходя из этого, полезной работой является работа по подъему картофеля: А вот работа но подъему самого ведра не является полезной:
Вся же совершенная (полная работа) равна:
Какую долю составляет полезная работа от совершенной?
Обозначим отношение буквой
(эта) и назовем коэффициентом полезного действия (КПД). Тогда
КПД, как правило, выражают в процентах.
Таким образом, КПД (эффективность работы) в данном случае равен 83 %.
Рассмотрим еще один пример. Дети разгоняют санки, действуя силой F в направлении их движения (рис. 222). Совершенная (полная) работа здесь Цель детей — увеличить скорость движения санок. Но на санки действует еще сила трения скольжения
Она тормозит движение санок. Значит, работа детей по преодолению силы трения не является полезной:
Полезной же работой была
Тогда доля полезной работы (КПД)
Физическая величина, равная отношению полезной работы к совершенной (полной), называется коэффициентом полезного действия.
А могут ли механизм, машина, человек работать так, чтобы КПД = 100 %, т. е. чтобы вся совершенная работа была полезной?
Ученые неоднократно пытались создать такую машину (рис. 223), но все попытки оказались безуспешными. (Самостоятельно познакомьтесь в Интернете или справочной литературе с информацией о вечном двигателе.) В работе любой машины, механизма всегда есть неполезная работа, идущая на преодоление трения, сопротивления. А значит, КПД всегда меньше 100 %. А вот сделать неполезную работу минимальной означает повысить КПД.
Главные выводы:
- Совершенная (т. е. полная) механическая работа всегда больше полезной.
- КПД показывает, какую долю составляет полезная работа от всей совершенной.
- Чем больше полезная работа, тем выше КПД.
- КПД всегда меньше 100 %.
Пример решения задачи:
При подъеме картофеля из хранилища глубиной h = 3,6 м подъемным устройством с КПД = 90 % совершена работа
= 40 кДж. Сколько мешков картофеля массой
= 40 кг каждый было поднято из хранилища? Примите
Дано:
Решение:
Зная совершенную работу и КПД, можно найти полезную работу по подъему мешков картофеля:
Полезная работа — это работа подъемного устройства по преодолению силы тяжести, действующей на картофель:
Масса где N — число мешков картофеля. Тогда
откуда
Ответ: N = 25 мешков.
Мощность и единицы мощности
Приобретая автомобиль (рис. 226), газонокосилку, микроволновую печь (рис. 227) и др., человек интересуется их мощностью. Именно мощность является паспортной характеристикой машин и механизмов. Что же такое мощность? Почему так важно ее знать?
Рассмотрим пример. Человек лопатой копает яму для погреба в течение нескольких дней. Такую же яму экскаватор (рис. 228) выкопает за несколько минут. Работа выполняется одинаковая. Одинаковая масса грунта поднимается на одну и ту же высоту. Но быстрота совершения работы человеком и экскаватором разная. За единицу времени экскаватор выполняет во много раз большую работу, чем человек. Для описания быстроты совершения работы вводится мощность.
Физическая величина, равная отношению работы к промежутку времени, за который эта работа совершена, называется мощностью. Обозначается мощность буквой Р.
За единицу мощности в СИ принимается мощность, при которой действующая на тело сила за время t = 1 с совершает работу А = 1 Дж. Эта единица мощности называется ватт (Вт) в честь английского изобретателя Дж. Уатта. Для измерения больших мощностей используют кратные единицы: гектоватт (гВт), киловатт (кВт), мегаватт (МВт). Обратите внимание:
Для малых мощностей употребляются дольные единицы — милливатт (мВт), микроватт (мкВт):
В быту часто необдуманно единицу мощности киловатт принимают за единицу работы. Но работа из чего следует, что единицей работы может быть только киловатт-час (кВт • ч), но не киловатт (кВт). Выразим мощность через другие единицы — силу и скорость. Мощность
но работа
путь
Тогда
Мощность пропорциональна силе, совершающей работу, и скорости движения. Тогда при постоянной мощности чем меньше скорость, тем больше сила. Вот почему водитель, трогаясь с места или поднимаясь в гору (рис. 229), когда требуется большая сила, едет на малой скорости. Тем самым он увеличивает силу тяги двигателя автомобиля.
Главные выводы
- Мощность — физическая величина, характеризующая быстроту совершения работы.
- Единицей мощности в СИ является 1 ватт.
- Одинаковую мощность можно получить либо при большой скорости и небольшой силе, либо при малой скорости и большой силе.
Для любознательных
В автомобилестроении по традиции используют старинную единицу мощности — лошадиную силу (л. с.). С помощью рисунка сформулируйте самостоятельно определение мощности в 1 лошадиную силу.
Запишем связь 1 л. с. и ватта: 1 л. с. = 736 Вт.
В этих внесистемных единицах мощность первого белорусского трактора МТЗ-2 (1953 г.) была равна 37 л. с. Освоенный в 2010 г. трактор «Беларус-3023» имеет двигатель мощностью 300 л. с. Переведите эти знамения мощности в единицы СИ самостоятельно и сравните их.
Пример решения задачи:
На уроке физкультуры мальчик массой m = 40 кг поднялся по канату на высоту h = 5,0 м за промежуток времени t = 10 с. Определите среднюю мощность, развиваемую мальчиком при подъеме. Коэффициент
Дано:
Решение:
При подъеме по канату работа мускульной силы рук идет на преодоление силы тяжести.
Тогда
Ответ: P = 0, 20 кВт.
Кинетическая энергия
Энергия — одно из наиболее важных и сложных понятий. Причем не только в физике, но и в других науках. А что же такое кинетическая энергия?
Рассмотрим два примера. Шайба, попадая в сетку ворот (рис. 230), прогибает ее. Молот для забивания свай (рис. 231), падая на сваю, загоняет ее в землю на некоторую глубину. Чтобы сильнее прогнуть сетку или глубже забить сваю, шайба и молот должны иметь большую скорость. И шайба, и молот совершили работу. При этом скорость их движения изменилась (уменьшилась до нуля). Совершенные ими работы были разными, даже если предположить, что скорости движения были одинаковыми. Но массы молота и шайбы не равны.
Если тело способно совершить работу, то оно обладает энергией. В физике энергию движущегося тела называют кинетической (от греч. kinetikos — приводящий в движение). Кинетическая энергия обозначается буквой К (или ) и измеряется в СИ в тех же единицах, что и работа, т. е. в джоулях.
Большая кинетическая энергия движущихся тел — камня, автомобиля, железнодорожного состава (рис. 232), метеорита и др. — означает, во-первых, что при разгоне их до данной скорости разгоняющей силой была совершена большая работа и, во-вторых, при их остановке тормозящей силой будет совершена такая же большая работа.
Из примеров следует, что кинетическая энергия зависит от массы тела и скорости его движения. Какой является эта зависимость?
Опыты показывают, что кинетическая энергия прямо пропорциональна массе тела и квадрату скорости его движения:
Увеличение скорости движения тела, например в 4 раза, приводит к возрастанию кинети- Обратите внимание! ческой энергии в 16 раз. Об этом должны всегда помнить водители и пешеходы.
Главные выводы:
- Кинетическая энергия выражает способность движущихся тел совершать работу.
- Кинетическая энергия, как и работа, измеряется в джоулях.
- Кинетическая энергия тела зависит от его массы и скорости.
- Изменить (увеличить или уменьшить) кинетическую энергию тела можно только путем совершения работы (положительной или отрицательной).
Пример решения задачи:
Скорость движения груженого автомобиля массой m = 4,0 т увеличилась от до
на пути s = 25 м. Определите силу тяги двигателя автомобиля и работу, которую совершила эта сила. Сопротивление движению не учитывать.
Дано:
Решение:
Чтобы увеличить кинетическую энергию от до
сила тяги должна была совершить работу:
Но работа Отсюда
Ответ:
Потенциальная энергия
При разгоне любого тела (санок, автомобиля и др.) у него возникает способность совершить механическую работу — у движущегося тела появляется кинетическая энергия. А если тело неподвижно? Обладает ли оно способностью совершить работу?
Проведем два опыта. В первом поднимем и укрепим на нити над ящиком с песком гирю (рис. 235, а). Во втором между упором и шариком поместим предварительно сжатую и связанную ниткой пружину (рис. 235, б). Оба тела (гиря и пружина) неподвижны и не обладают кинетической энергией. Но и у гири, и у пружины есть возможность совершить работу. Для этого достаточно в обоих случаях пережечь нить. В физике говорят, что тела (поднятая гиря, взаимодействующая с Землей, и сжатая пружина) обладают потенциальной энергией (от лат. potentia — скрытая способность). Потенциальную энергию в СИ измеряют в тех же единицах, что и работу, — в джоулях.
Важно понимать, что потенциальная энергия не появляется сама по себе. В этих опытах гиря была поднята над столом, пружина была сжата какой-то силой. Значит, чтобы тело запасло потенциальную энергию, необходимо совершить работу. Чем сильнее будет сжата пружина, чем выше будет поднято тело, тем больше у них будет запас потенциальной энергии. Тела, представленные на рисунке 236, уже обладают потенциальной энергией. У трамплина она вызвана прогибом (деформацией) доски, у мышеловки — закручиванием пружины, у лука — изменением расположения древка и тетивы. Из этих и других примеров следует, что потенциальная энергия — это энергия, обусловленная взаимным расположением взаимодействующих тел или частей тела (гири и Земли, стрелы и тетивы, звеньев пружины). Обозначается потенциальная энергия буквой П (или ).
Именно благодаря потенциальной энергии сжатой (закрученной) пружины работают механические часы, реле времени микроволновых печей, стиральных машин, движутся некоторые детские игрушки. Потенциальная энергия поднятой с помощью плотины воды заставляет работать гидроэлектростанции (рис. 237).
Главные выводы:
- Неподвижные взаимодействующие тела (система тел) могут обладать способностью совершать механическую работу, а значит, потенциальной энергией.
- Значение потенциальной энергии зависит от взаимного расположения взаимодействующих тел (частей тела).
- Потенциальная энергия изменяется только при совершении работы.
Расчет потенциальной энергии
Кинетическая энергия тела, зависящая от его массы и скорости, выражается формулой Данная формула справедлива и для планеты Земля, мчащейся со скоростью
по орбите вокруг Солнца, и для невидимого нашему глазу атома. Существует ли единая формула для расчета потенциальной энергии?
Рассмотрим отдельно два случая: потенциальную энергию притяжения поднятого над поверхностью Земли тела и потенциальную энергию деформированного тела.
В первом случае формулу для расчета потенциальной энергии легко вывести. Если тело массой m поднято относительно поверхности Земли на высоту h (рис. 238), то при его падении сила тяжести может совершить работу:
Это и есть потенциальная энергия поднятого тела:
Значение потенциальной энергии относительно. Так, относительно пола потенциальная энергия светильника (рис. 239) массой m = 1,0 кг, центр тяжести которого расположен на высоте от пола, равна:
Относительно потолка она равна:
Поэтому, приводя значение потенциальной энергии, необходимо указывать уровень, относительно которого она задана, — нулевой уровень потенциальной энергии (это может быть, к примеру, поверхность пола, потолка, стола и т. д.).
Гораздо сложнее дело обстоит с расчетом потенциальной энергии деформированного тела. Мы можем растянуть или сжать пружину, изогнуть или закрутить ее (рис. 240). Потенциальная энергия у пружины будет в каждом из этих случаев. И чем больше упругая деформация, тем больше потенциальная энергия пружины. В данном примере расчет потенциальной энергии придется вести по различным формулам. Более детально с этим вы будете знакомиться в 9-м классе.
Главные выводы:
- Потенциальная энергия притяжения тела к Земле зависит от массы тела и высоты его подъема над нулевым уровнем энергии.
- Значение потенциальной энергии тела зависит от выбора нулевого уровня энергии.
- Потенциальная энергия деформированного тела зависит от величины деформации.
Пример решения задачи:
Парафиновый однородный кубик с длиной ребра а = 10 см лежит на столе на высоте = 0,80 м от пола. Определите потенциальную энергию кубика относительно поверхностей: а) пола; б) стола. Какую работу нужно совершить, чтобы поднять кубик с пола на стол? Коэффициент
Дано:
Решение:
Потенциальная энергия кубика относительно поверхности пола (рис. 241) определяется положением его центра (точки O):
Масса кубика объем
тогда:
Потенциальная энергия кубика относительно поверхности стола:
Работа по подъему кубика на высоту равна изменению его потенциальной энергии. Получаем:
Ответ:
Закон сохранения механической энергии
Кинетическая и потенциальная энергии — это два вида механической энергии. Связаны ли они друг с другом? И если да, то в чем выражается эта связь?
Проследим за движением брошенного вверх металлического шарика (рис. 243). В нижней точке траектории сила действия руки на шарик сообщает ему кинетическую энергию. Шарик движется вверх. Скорость его движения, а значит, и кинетическая энергия уменьшаются. Но исчезает ли кинетическая энергия бесследно? Поднимаясь выше, шарик приобретает все большую потенциальную энергию (вспомните: ). В верхней точке скорость и кинетическая энергия шарика равны нулю, а потенциальная максимальна. Значит, в рассмотренном примере происходит превращение энергии из одного вида (кинетической) в другой (потенциальную). При возвращении шарика обратно снова будет идти превращение энергии: с уменьшением высоты (и потенциальной энергии) увеличивается скорость движения шарика (и кинетическая энергия).
Если сопротивление воздуха мало (и им можно пренебречь), брошенный вверх шарик возвращается назад практически с такой же, как в момент бросания, скоростью и кинетической энергией.
А каким будет значение механической энергии шарика в промежуточных точках? Например, на высоте (рис. 243)? При подъеме шарика на высоту
его кинетическая энергия уменьшилась, но при этом появилась потенциальная энергия. А чему равна их сумма, т. е. полная механическая энергия? Данный и подобные опыты и расчеты показывают, что если сил сопротивления нет, то полная механическая энергия тела (системы тел), равная сумме кинетической и потенциальной энергий
сохраняется. Данное утверждение о постоянстве механической энергии в физике называют законом сохранения механической энергии.
Если силами трения или сопротивления движению нельзя пренебречь, этот закон не выполняется. Заменим в опыте металлический шарик на пенопластовый брусок такой же массы (рис. 244). Мы увидим, что даже при большей, чем у металлического шарика, начальной скорости он не поднимется на такую же высоту и вернется назад с заметно меньшей скоростью. Убывает кинетическая энергия движущейся по горизонтальной поверхности льда шайбы, но потенциальная энергия взамен не появляется. За счет кинетической энергии шайбы совершается работа против сил трения.
В заключение заметим, что явление превращения энергии из одного вида в другой человек научился использовать в практических целях. Энергия падающей воды приводит в действие водяные мельницы и гидроэлектростанции. В Республике Беларусь успешно реализуется государственная программа использования энергии рек. Важная роль в ней отводится таким рекам, как Неман и Западная Двина. Па Немане работает Гродненская ГЭС мощностью 17 МВт. Установленная мощность Витебской ГЭС на Западной Двине — 40 МВт.
Кинетическую энергию ветра человек с давних времен начал использовать с помощью паруса (рис. 245), затем стал применять в ветряных мельницах. В последние годы в нашей стране начато сооружение ветроэлектростанций (рис. 246). Они уникальны тем, что не оказывают вредного воздействия на окружающую среду. Во многих странах успешно используют энергию приливов и отливов вод морей и океанов. Там созданы приливные электростанции.
Главные выводы:
- Кинетическая и потенциальная энергии взаимо-превращаемы.
- При отсутствии сил трения и сопротивления движению полная механическая энергия тела (системы тел) сохраняется.
- Закон сохранения механической энергии не выполняется, если силами трения (сопротивления) нельзя пренебречь.
- Заказать решение задач по физике
Пример решения задачи:
Камень бросили вертикально вверх со скоростью На какой высоте от точки бросания кинетическая энергия камня будет в 4 раза меньше его потенциальной энергии? Сопротивлением движению камня пренебречь. Коэффициент
Дано:
Решение:
За нулевой уровень потенциальной энергии примем уровень O — O, проходящий через точку бросания камня (рис. 247). Значит,
Полная механическая энергия камня в точке бросания 1:
Полная механическая энергия камня в точке 2:
По условию Значит,
Ответ:
Энергия и работа
Энергия – эта количественная мера различных форм движения и взаимодействия (по гречески слово «энергия» означает действие). Энергия в зависимости от вида движения в природе проявляется по-разному. Например, механическая, тепловая, электромагнитная, ядерная энергия и другие. В результате взаимодействия энергия одного вида превращается в энергию другого вида. Однако во всех этих процессах энергия, переданная от одного тела второму (независимо от ее вида), будет равна энергии, полученной вторым телом от первого.
Как известно из второго закона Ньютона, чтобы изменить механическое движение тела на него должны подействовать другие тела. Иначе говоря, среди этих тел происходит обмен энергиями. Для описания такого обмена энергии в механике введено понятие механическая работа, которую принято обозначать буквой .
Механическая работа. Величина, равная скалярному произведению силы на перемещение в направлении действия силы, называется механической работой, т.е.
Здесь: – угол между силой
и перемещением
s (рисунок 3.1).
Если учитывать, что , то уравнение (3.1) примет вид:
Здесь – проекция силы в направлении смещения.
Основываясь на выражении (3.2), можно сделать следующий вывод:
если , то
– работа силы положительна, направление силы и смещение совпадают;
если , то
– работа силы отрицательная, направления силы и смещения противоположны;
если , то
– работа, выполненная силой, равна нулю, направление силы будет перпендикулярным к направлению смещения.
Работа считается аддитивной (аддитив – по-латински означает суммарный) величиной (в физике аддитивность величины означает, что величина, относящаяся к системе в целом, равна сумме величины, относящихся к ее составным частям).
Если на тело действует несколько сил, то будет:
тогда полная работа равна работе, выполненной равнодействующей сил.
или
Единица работы. Единица измерения работы в системе СИ – Джоуль (Дж):
В качестве единицы работы в СИ принята работа выполненная силой 1Н при смещении тела на 1 м.
Работа силы тяжести. На поверхности Земли на тело действует сила тяжести со стороны Земли, равная . При перемещении тела из точки
на высоте
от поверхности Земли в точку
на высоте
от поверхности Земли, смещение тела равно:
(рис. 3.2).
Здесь выполненная силой тяжести работа выражается следующей формулой:
Здесь: – вес тела,
– его масса,
– ускорение свободного падения,
– расстояние между уровнями
и
по вертикали.
Работа, выполненная силой тяжести, не зависит от формы пути, зависит только от высоты спуска. Поэтому работа, выполненная под действием силы тяжести, зависит не от формы траектории, а от начального и конечного состояний. Такая сила называются потенциальной или консервативной. Поле такой силы называется потенциальным полем.
При движении тела вниз из-за соответствия направления силы тяжести и смещения выполненная работа будет положительной, при движении вверх из-за противоположности направлений работа будет отрицательной. Поэтому в случае, когда тело под воздействием силы тяжести смещено и вернулось обратно, выполненная общая работа равняется нулю.
Полной механической энергией системы называется сумма кинетической и потенциальной энергии системы. Например, полная механическая энергия тела массой , двигающегося со скоростью
относительно Земли на высоте
от поверхности Земли:
Полная механическая энергия системы остается неизменной с течением времени:
Возможны лишь превращения потенциальной энергии и кинетическую и обратно. Выражение (3.5) представляет собой закон сохранения механической энергии.
Проведенные многочисленные эксперименты, теоретические выводы подтвердили строгое соблюдение закона сохранения энергии.
В природе постоянно происходят превращения одного вида энергии в другой (например, механическая энергия переходит в тепловую энергию). Поэтому этот закон также называют законом сохранения и превращения энергии. Этот закон является основным законом природы и действителен не только для макроскопических, но и микроскопических систем.
Энергия никогда не исчезает, ниоткуда не появляется, она может только преобразовываться из одного вида в другой.
В закрытых системах полная энергия сохраняется.
Например, потенциальная энергия тела, падающего с высоты , зависит от его веса и абсолютно не зависит от времени проведения экспериментов.
Коэффициент полезного действия. Введена величина, показывающая, какая часть израсходованной энергии машин и двигателей превращается в полезную работу.
Отношение полезной работы к полной работе называется коэффициентом полезного действия (КПД) и обозначается буквой .
Если полезную работу обозначить , полную работу
, тогда формулу КПД можно записать в виде:
КПД не может быть больше единицы (100%). В машинах и двигателях в результате работы силы трения часть полной энергии расходуется и поэтому КПД всегда меньше единицы.
Рассмотрим наклонную плоскость и выполненную работу при подъеме тела вверх. По «золотому правилу» механики, во сколько раз выигрываем в силе, во столько раз проиграем в расстоянии. Но из-за увеличения расстояния смещения не меняется выполненная работа.
Рассмотрим груз с весом на наклонной плоскости длиной
, высотой
(рис. 3.3). Здесь на тело действует сила трения
, параллельная наклонной поверхности тянущая вверх сила
, перпендикулярно направленная к наклонной плоскости
и противоположно направленная перпендикулярно к поверхности сила
(реактивная сила поверхности).
Если не учитывать силу трения, получим уравнение:
Однако с учетом силы трения,
Тогда пишется в следующем виде:
Коэффициент полезного действия:
Сила притяжения, действующая на груз, равна:
- Движение и силы
- Давление в физике
- Строение вещества в физике
- Физическое тело и вещество в физике
- Золотое правило механики
- Потенциальная энергия
- Кинетическая энергия
- Закон сохранения и превращения механической энергии
Для нас привычно понятие «работа» в бытовом смысле. Работая, мы совершаем какое-либо действие, чаще всего полезное. В физике (если точнее, то в механике) термин «работа» показывает, какую силу в результате действия приложили, и на какое расстояние тело в результате действия этой силы переместилось.
Например, нам нужно поднять велосипед по лестнице в квартиру. Тогда работа будет определяться тем, сколько весит велосипед и на каком этаже (на какой высоте) находится квартира.
Механическая работа — это физическая величина, прямо пропорциональная приложенной к телу силе и пройденному телом пути.
Чтобы рассчитать работу, нам необходимо умножить численное значение приложенной к телу силы F на путь, пройденный телом в направлении действия силы S. Работа обозначается латинской буквой А.
Механическая работа
А = FS
A — механическая работа [Дж]
F — приложенная сила [Н]
S — путь [м]
Если под действием силы в 1 ньютон тело переместилось на 1 метр, то данной силой совершена работа в 1 джоуль.
Поскольку сила и путь — векторные величины, в случае наличия между ними угла формула принимает вид.
Механическая работа
А = FScosα
A — механическая работа [Дж]
F — приложенная сила [Н]
S — путь [м]
α — угол между векторами силы и перемещения [°]
Числовое значение работы может становиться отрицательным, если вектор силы противоположен вектору скорости. Иными словами, сила может не только придавать телу скорость для совершения движения, но и препятствовать уже совершаемому перемещению. В таком случае сила называется противодействующей.
Для совершения работы необходимы два условия:
- чтобы на тело действовала сила,
- чтобы происходило перемещение тела.
Сила, действующая на тело, может и не совершать работу. Например, если кто-то безуспешно пытается сдвинуть с места тяжелый шкаф. Сила, с которой человек действует на шкаф, не совершает работу, поскольку перемещение шкафа равно нулю.
Запомнить!
Работа равна нулю, если:
- при приложенной силе перемещение отсутствует;
- сила не приложена и тело перемещается по инерции;
- угол между векторами силы и перемещения равен 90°.
Полезная и затраченная работа
Был такой мифологический персонаж у древних греков — Сизиф. За то, что он обманул богов, те приговорили его после смерти вечно таскать огромный булыжник вверх по горе, откуда этот булыжник скатывался — и так без конца. В общем, Сизиф делал совершенно бесполезное дело с нулевым КПД. Поэтому бесполезную работу и называют «сизифов труд».
Чтобы разобраться в понятиях полезной и затраченной работы, давайте пофантазируем и представим, что Сизифа помиловали и камень больше не скатывается с горы, а КПД перестал быть нулевым.
Полезная работа в этом случае равна потенциальной энергии, приобретенной булыжником. Потенциальная энергия, в свою очередь, прямо пропорциональна высоте: чем выше расположено тело, тем больше его потенциальная энергия. Выходит, чем выше Сизиф прикатил камень, тем больше полезная работа.
Потенциальная энергия
Еп = mgh
m — масса тела [кг]
g — ускорение свободного падения [м/с2]
h — высота [м]
На планете Земля g ≈ 9,8 м/с2
Затраченная работа в нашем примере — это механическая работа Сизифа. Механическая работа зависит от приложенной силы и пути, на протяжении которого эта сила была приложена.
Механическая работа
А = FS
A — механическая работа [Дж]
F — приложенная сила [Н]
S — путь [м]
И как же достоверно определить, какая работа полезная, а какая затраченная?
Все очень просто! Задаем два вопроса:
-
За счет чего происходит процесс?
-
Ради какого результата?
В примере выше процесс происходит ради того, чтобы тело поднялось на какую-то высоту, а значит — приобрело потенциальную энергию (для физики это синонимы).
Происходит процесс за счет энергии, затраченной Сизифом — вот и затраченная работа.
Мощность
На заводах по всему миру большинство задач выполняют машины. Например, если нам нужно закрыть крышечками тысячу банок колы, аппарат сделает это в считанные минуты. У человека эта задача заняла бы намного больше времени. Получается, что машина и человек выполняют одинаковую работу за разные промежутки времени. Для того, чтобы описать скорость выполнения работы, нам потребуется понятие мощности.
Мощностью называется физическая величина, равная отношению работы ко времени ее выполнения.
Мощность
N = A/t
N — мощность [Вт]
A — механическая работа [Дж]
t — время [с]
Один ватт — это мощность, при которой работа в один джоуль совершается за одну секунду.
Также для мощности справедлива другая формула:
Мощность
N = Fv
N — мощность [Вт]
F — приложенная сила [Н]
v — скорость [м/с]
Как и для работы, для мощности справедливо правило знаков: если векторы направлены противоположно, значение мощности будет отрицательным.
Поскольку сила и скорость — векторные величины, в случае наличия между ними угла формула принимает следующий вид:
Мощность
N = Fvcosα
N — мощность [Вт]
F — приложенная сила [Н]
v — скорость [м/с]
α — угол между векторами силы и скорости [°]
Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Пятерка по физике у тебя в кармане!
Решай домашку по физике на изи. Подробные решения помогут разобраться в сложной теме и получить пятерку!
Примеры решения задач
Задача 1
Ложка медленно тонет в большой банке меда. На нее действуют сила тяжести, сила вязкого трения и выталкивающая сила. Какая из этих сил при движении тела совершает положительную работу? Выберите правильный ответ:
-
Выталкивающая сила.
-
Сила вязкого трения.
-
Сила тяжести.
-
Ни одна из перечисленных сил.
Решение
Поскольку ложка падает вниз, перемещение направлено вниз. В ту же сторону, что и перемещение, направлена только сила тяжести. Это значит, что она совершает положительную работу.
Ответ: 3.
Задача 2
Ящик тянут по земле за веревку по горизонтальной окружности длиной L = 40 м с постоянной по модулю скоростью. Модуль силы трения, действующей на ящик со стороны земли, равен 80 H. Чему равна работа силы тяги за один оборот?
Решение
Поскольку ящик тянут с постоянной по модулю скоростью, его кинетическая энергия не меняется. Вся энергия, которая расходуется на работу силы трения, должна поступать в систему за счет работы силы тяги. Отсюда находим работу силы тяги за один оборот:
Ответ: 3200 Дж.
Задача 3
Тело массой 2 кг под действием силы F перемещается вверх по наклонной плоскости на расстояние l = 5 м. Расстояние тела от поверхности Земли при этом увеличивается на 3 метра. Вектор силы F направлен параллельно наклонной плоскости, модуль силы F равен 30 Н. Какую работу при этом перемещении в системе отсчета, связанной с наклонной плоскостью, совершила сила F?
Решение
В данном случае нас просят найти работу силы F, совершенную при перемещении тела по наклонной плоскости. Это значит, что нас интересуют сила F и пройденный путь. Если бы нас спрашивали про работу силы тяжести, мы бы считали через силу тяжести и высоту.
Работа силы определяется как скалярное произведение вектора силы и вектора перемещения тела. Следовательно:
A = Fl = 30 * 5 = 150 Дж
Ответ: 150 Дж.
Задача 4
Тело движется вдоль оси ОХ под действием силы F = 2 Н, направленной вдоль этой оси. На рисунке приведен график зависимости проекции скорости vx тела на эту ось от времени t. Какую мощность развивает эта сила в момент времени t = 3 с?
Решение
На графике видно, что проекция скорости тела в момент времени 3 секунды равна 5 м/с.
Мощность можно найти по формуле N = Fv.
N = FV = 2×5 = 10 Вт
Ответ: 10 Вт.
Попробуйте онлайн-курс подготовки к ЕГЭ по физике с опытным преподавателем в Skysmart!
Работа и мощность электрического тока. Закон Джоуля-Ленца
1. Электрический ток, проходя по цепи, производит разные действия: тепловое, механическое, химическое, магнитное. При этом электрическое поле совершает работу, и электрическая энергия превращается в другие виды энергии: во внутреннюю, механическую, энергию магнитного поля и пр.
Как было показано, напряжение ( (U) ) на участке цепи равно отношению работы ( (F) ) , совершаемой при перемещении электрического заряда ( (q) ) на этом участке, к заряду: ( U=A/q ) . Отсюда ( A=qU ) . Поскольку заряд равен произведению силы тока ( (I) ) и времени ( (t) ) ( q=It ) , то ( A=IUt ) , т.е. работа электрического тока на участке цепи равна произведению напряжения на этом участке, силы тока и времени, в течение которого совершается работа.
Единицей работы является джоуль (1 Дж). Эту единицу можно выразить через электрические единицы:
Для измерения работы используют три измерительных прибора: амперметр, вольтметр и часы, однако, в реальной жизни для измерения работы электрического тока используют счётчики электрической энергии.
Если нужно найти работу тока, но при этом сила тока или напряжение неизвестны, то можно воспользоваться законом Ома, выразить неизвестные величины и рассчитать работу по формулам: ( A=fract ) или ( A=I^2Rt ) .
2. Мощность электрического тока равна отношению работы ко времени, за которое она совершена: ( P=A/t ) или ( P=IUt/t ) ; ( P=IU ) , т.е. мощность электрического тока равна произведению напряжения и силы тока в цепи.
Единицей мощности является ватт (1 Вт): ( [P]=[I]cdot[U] ) ; ( [P] ) = 1 А · 1 В = 1 Вт.
Используя закон Ома, можно получить другие формулы для расчета мощности тока: ( P=frac;P=I^2R ) .
Значение мощности электрического тока в проводнике можно определить с помощью амперметра и вольтметра, измерив соответственно силу тока и напряжение. Можно для измерения мощности использовать специальный прибор, называемый ваттметром, в котором объединены амперметр и вольтметр.
3. При прохождении электрического тока по проводнику он нагревается. Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию. Таким образом, при совершении током работы увеличивается внутренняя энергия проводника, в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: ( Q=A ) или ( Q=IUt ) . Учитывая, что ( U=IR ) , ( Q=I^2Rt ) .
Количество теплоты, выделяющееся при прохождении тока но проводнику, равно произведению квадрата силы тока, сопротивления проводника и времени.
Этот закон называют законом Джоуля-Ленца.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. Силу тока в проводнике увеличили в 2 раза. Как изменится количество теплоты, выделяющееся в нём за единицу времени, при неизменном сопротивлении проводника?
1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза
2. Длину спирали электроплитки уменьшили в 2 раза. Как изменится количество теплоты, выделяющееся в спирали за единицу времени, при неизменном напряжении сети?
1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза
3. Сопротивления резистор ( R_1 ) в четыре раза меньше сопротивления резистора ( R_2 ) . Работа тока в резисторе 2
1) в 4 раза больше, чем в резисторе 1
2) в 16 раз больше, чем в резисторе 1
3) в 4 раза меньше, чем в резисторе 1
4) в 16 раз меньше, чем в резисторе 1
4. Сопротивление резистора ( R_1 ) в 3 раза больше сопротивления резистора ( R_2 ) . Количество теплоты, которое выделится в резисторе 1
1) в 3 раза больше, чем в резисторе 2
2) в 9 раз больше, чем в резисторе 2
3) в 3 раза меньше, чем в резисторе 2
4) в 9 раз меньше, чем в резисторе 2
5. Цепь собрана из источника тока, лампочки и тонкой железной проволоки, соединенных последовательно. Лампочка станет гореть ярче, если
1) проволоку заменить на более тонкую железную
2) уменьшить длину проволоки
3) поменять местами проволоку и лампочку
4) железную проволоку заменить на нихромовую
6. На рисунке приведена столбчатая диаграмма. На ней представлены значения напряжения на концах двух проводников (1) и (2) одинакового сопротивления. Сравните значения работы тока ( A_1 ) и ( A_2 ) в этих проводниках за одно и то же время.
1) ( A_1=A_2 )
2) ( A_1=3A_2 )
3) ( 9A_1=A_2 )
4) ( 3A_1=A_2 )
7. На рисунке приведена столбчатая диаграмма. На ней представлены значения силы тока в двух проводниках (1) и (2) одинакового сопротивления. Сравните значения работы тока ( A_1 ) и ( A_2 ) в этих проводниках за одно и то же время.
1) ( A_1=A_2 )
2) ( A_1=3A_2 )
3) ( 9A_1=A_2 )
4) ( 3A_1=A_2 )
8. Если в люстре для освещения помещения использовать лампы мощностью 60 и 100 Вт, то
А. Большая сила тока будет в лампе мощностью 100 Вт.
Б. Большее сопротивление имеет лампа мощностью 60 Вт.
Верным(-и) является(-ются) утверждение(-я)
1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б
9. Электрическая плитка, подключённая к источнику постоянного тока, за 120 с потребляет 108 кДж энергии. Чему равна сила тока в спирали плитки, если её сопротивление 25 Ом?
1) 36 А
2) 6 А
3) 2,16 А
4) 1,5 А
10. Электрическая плитка при силе тока 5 А потребляет 1000 кДж энергии. Чему равно время прохождения тока по спирали плитки, если её сопротивление 20 Ом?
1) 10000 с
2) 2000 с
3) 10 с
4) 2 с
11. Никелиновую спираль электроплитки заменили на нихромовую такой же длины и площади поперечного сечения. Установите соответствие между физическими величинами и их возможными изменениями при включении плитки в электрическую сеть. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.
ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) электрическое сопротивление спирали
Б) сила электрического тока в спирали
B) мощность электрического тока, потребляемая плиткой
ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась
12. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. Запишите в таблицу выбранные цифры под соответствующими буквами.
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) работа тока
Б) сила тока
B) мощность тока
Часть 2
13. Нагреватель включён последовательно с реостатом сопротивлением 7,5 Ом в сеть с напряжением 220 В. Каково сопротивление нагревателя, если мощность электрического тока в реостате составляет 480 Вт?
Источник
Мощность пропорциональна квадрату напряжения
Сайт преподавателя КПК:
Информационные технологии, Компьютерная графика, Физика
Напряжение измеряют вольтметром (V), а ток через нагрузку (R) — амперметром (A).
Чем быстрее выполняется работа, тем больше мощность исполнителя.
Мощная машина разгоняется быстрее. Мощный (сильный) человек способен быстрее затащить мешок картошки на девятый этаж.
1 Ватт — мощность, позволяющая совершить работу в 1 Дж за одну секунду (что такое джоуль описывалось выше).
Если Вы способны разогнать двухкилограммовое тело до скорости 1 м/с за одну секунду, значит, развиваете мощность 1 Вт.
Если Вы поднимаете килограммовый груз на высоту 0,1 метра за секунду, Ваша мощность равна 1 Вт ибо груз приобретает за секунду потенциальную энергию в 1 Дж.
Если уронить с одинаковой высоты одну тарелку на бетонный пол, а вторую на одеяло, первая наверняка разобьется, а вторая выживет. В чем разница? Начальные и конечные условия одинаковые. Тарелки падают с одной и той же высоты, стало быть, обладают одинаковой энергией. На уровне пола обе тарелки останавливаются — вроде все идентично. Разница лишь в том, что энергия, которую тарелка накопила в процессе полета, в первом случае выделяется мгновенно (очень быстро), а когда тарелка падает на одеяло или ковер, процесс торможения растягивается во времени.
Пусть падающая тарелка обладает кинетической энергией в 1Дж. Процесс столкновения с бетонным полом занимает, допустим, 0,001 сек. Получается, что мощность, выделяемая при ударе, равна 1/0,001=1000 Вт!
Если же тарелка плавно замедляется в течение 0,1 сек, мощность будет 1/0,1=10 Вт. Уже есть шанс выжить — если на месте тарелки окажется живой организм.
Для того и существуют зоны деформации и подушки безопасности в автомобилях, чтобы растянуть во времени процесс выделения энергии при аварии, т.е., снизить мощность при ударе. А выделение энергии, между прочим и есть работа. В данном случае, работа по разрыву ваших внутренних органов и ломанию костей.
Вообще, работа — это процесс преобразования одного вида энергии в другой.
Еще пример: можно без последствий сжечь содержимое баллона с пропаном в горелке. Но если смешать газ, содержащийся в баллоне с воздухом и воспламенить, произойдет взрыв.
В обоих случаях выделяется одинаковое количество энергии. Но во втором энергия выделяется за короткий промежуток времени. А мощность — отношение количества работы ко времени, за которое она сделана.
Касаемо электричества, 1 Вт — мощность, выделяемая на нагрузке, когда произведение тока через нее и напряжения на его концах равно единице. То есть, например, если ток через лампу равен 1 А, и напряжение на ее выводах равно 1 В, мощность, выделяемая на ней 1 Вт.
Такая же мощность будет у лампы с током 2 А при напряжении на ней 0,5 В — произведение этих величин тоже равно единице.
P = U*I. Мощность равна произведению напряжения и силы тока .
I = P/U — сила тока равна мощности, деленной на напряжение.
Есть, допустим, лампа накаливания. На ее цоколе указаны параметры: напряжение 220 В, мощность 100 Вт. Мощность 100 Вт означает, что произведение напряжения, прикладываемое к ее выводом, умноженное на ток, протекающий через эту лампу равно ста. U*I=100.
Какой ток через нее будет протекать? Элементарно, Ватсон: I = P/U, делим мощность на напряжение (100/220), получаем 0,454 А. Ток через лампу 0,454 ампер. Или, иначе, 454 миллиампер (милли — тысячная доля).
Еще один вариант записи U = P/I. Тоже где-нибудь пригодится.
Теперь мы вооружены двумя формулами — законом Ома и формулой мощности электрического тока. А это уже инструмент.
Мы хотим узнать сопротивление нити накала той же стоваттной лампы накаливания.
Закон Ома говорит нам: R = U/I.
Можно не высчитывать ток через лампу, чтобы подставить его потом в формулу, а пойти коротким путем: так как I = P/U, подставляем P/U вместо I в формулу R = U/I.
В самом деле, почему бы ток (который нам неизвестен) не заменить напряжением и мощностью лампы, (которые указаны на цоколе).
Итак: R = U/P/U, что равно U^2/P. R = U^2/P. 220 (напряжение) возводим в квадрат и делим на сто (мощность лампы). Получаем сопротивление 484 Ом.
Можно проверить вычисления. Выше мы таки считали ток через лампу — 0,454 А.
R = U/I = 220/0,454 = 484 Ом. Как ни крути, верный вывод один.
Еще раз, формула мощности: P = U*I (1), или I = P/U (2), или U = P/I (3).
Закон Ома: I = U/R (4) или R = U/I (5) или U = I*R (6).
В любой из этих формул, вместо неизвестного значения можно подставить известные.
Если в нужно узнать мощность, имея значения напряжения и сопротивления, берем формулу 1, вместо тока I подставляем его эквивалент из формулы 4.
Получается P = U^2/R. Мощность равна квадрату напряжения, деленному на сопротивление. То есть, при изменении напряжения, приложенного к сопротивлению, выделяемая на нем мощность меняется в квадратичной зависимости: подняли напряжение в два раза, мощность (для резистора — нагрев) увеличилась в четыре раза! Так говорит нам математика.
Понять почему это происходит на практике, поможет опять-таки гидравлическая аналогия. Предмет, находящийся на некоей высоте, обладает потенциальной энергией. И, спускаясь с этой высоты, он может совершить работу. Так совершает работу по выработке энергии вода в гидроэлектростанции, опускаясь через гидротурбину с уровня водохранилища до нижнего бьефа (нижнего уровня).
Потенциальная энергия предмета зависит от его массы и от высоты, на которой он находится (тем больше бед наделает падающий камень чем больше он весит, и с чем большей высоты он падает). Также имеет значение сила тяжести в месте его падения. Один и тот же камень, падающий с одинаковой высоты более опасен на Земле , нежели на Луне, так как на Луне «сила тяжести» (сила, тянущая камень вниз) меньше земной в 6 раз. Итак, у нас три параметра, влияющих на потенциальную энергию — масса, высота и сила тяжести. Именно они и содержатся в формуле кинетической энергии:
где m — масса предмета, g — ускорение свободного падения в данном месте («сила тяжести»), h — высота, на которой находится предмет.
Соберем установку: насос с приводом от двигателя будет качать воду из нижнего резервуара в верхний, а стекающая под действием силы тяжести из верхнего резервуара вода, будет крутить генератор:
Понятно, что чем выше водяной столб, тем большей энергией будет обладать вода. Увеличим высоту столба в два раза. Понятно, что при удвоенной высоте h, вода будет обладать вдвое большей потенциальной энергией, и, вроде бы, мощность генератора должна возрасти вдвое? На самом деле, его мощность увеличится в четыре раза. Почему? Потому что из-за удвоенного давления сверху, поток воды через генератор удвоится. И удвоенный поток воды при удвоенном же давлении, приведет к четырехкратному увеличению мощности, выделяемой на генераторе: в два раза больше, и в два раза сильнее.
То же самое происходит на сопротивлении, при удвоении приложенного к нему напряжения. Мы же помним формулу мощности, выделяемой на резисторе?
Мощность P равна произведению напряжения U, приложенного к резистору и тока I, протекающего через него. При удвоении приложенного напряжения U, мощность, вроде как должна удвоится. Но ведь повышение напряжения ведет и к пропорциональному росту тока через резистор! Стало быть, удвоится не только U, но и I. Именно поэтому, мощность зависит от приложенного напряжения в квадратичной зависимости.
Батарея с удвоенным напряжением «закачивает» электроны на вдвое большую «высоту», и это приводит точно к такой же картине, как в гидравлическом аналоге.
Нужно узнать мощность, зная сопротивление и ток, но не зная напряжение? Нет проблем. В ту же первую формулу вместо U подставляем эквивалент U из формулы 6. Получаем P = I^2*R. Мощность равна квадрату тока, умноженному на сопротивление.
Приведенный выше гидравлический аналог поможет понять, почему. Удвоение тока через данный резистор возможно только при удвоении приложенного к нему напряжения. А стало быть, формула P = U*I, сработает и тут, несмотря на отсутствие в формуле P = I^2*R напряжения. Просто напряжение в данном случае присутствует «за кадром», прячась за другими переменными.
Еще одна странность данной формулы — мощность прямо пропорциональна сопротивлению. Разве так может быть? Ну давайте тогда вообще разорвем цепь, сопротивление возрастет до бесконечности, а значит, соответственно вырастет мощность, выделяемая на том, чего нет? Бред какой.
На самом деле все просто. Рост сопротивления приведет к соответствующему уменьшению тока через резистор. Если в формуле
сопротивление R увеличить вдвое, то ток I уменьшится вдвое. А зависимость мощности от тока в этой формуле — квадратичная. Стало быть, мощность выделяемая на резисторе ожидаемо упадет в два раза.
И так далее. В любых комбинациях. Зная любые два параметра из четырех: напряжение, ток, сопротивление, мощность, можно узнать все остальные.
Напряжение (U) — это «разность электрического давления» между какими-либо двумя точками электрической цепи (аналог разности давлений жидкости). Единица измерения — вольт.
Ток (I) — это количество электронов, проходящих через участок цепи (аналог потока жидкости). Единица измерения — ампер. 1 А = 1 Кл/сек.
Сопротивление (R) — способность участка цепи мешать (сопротивляться) перемещению электронов (как узкое место или засор в трубе). Единица измерения — ом.
Мощность (P) — это произведение напряжения и тока (как если бы мы умножили расход воды через какой либо участок водопровода на разность давлений на концах этого участка). Единица измерения — ватт.
Источник
Мощность
Мощностью
N называют
величину, равную отношению работы А к
промежутку времени t, в течение которого
эта работа была совершена:
N=A/t
(3.11)
Из
формулы (3.11) следует, что в СИ единицей
мощности яв-ляется 1 Дж/с (джоуль в
секунду). Эту единицу иначе называют
ватт (Вт), 1 Вт= 1 Дж/с.
Связь
между мощностью и скоростью при
равномерном движении найдем, подставив
(3.10) в (3.11):
N=Fvcosa.
(Эта
формула справедлива и для переменного
движения, если под N понимать мгновенную
мощность, а под V — мгновенную скорость).
Если направление силы совпадает с
направлением перемещения, то cosa=1
и N=Fv. Из последней формулы следует, что
F=N/v
и v=N/F.
Из
этих формул видно, что при постоянной
мощности двигателя скорость движения
обратно пропорциональна силе тяги и
наоборот. На этом основан принцип
действия коробки скоростей (коробки
перемены передач) различных транспортных
средств.
17
билет
Работа
и изменение скорости тела. Установим
связь между работой постоянной силы и
изменением скорости тела. Рассмотрим
случай, когда на тело массой mдействует
постоянная сила (она
может быть равнодействующей нескольких
сил) и векторы силы и
перемещения направлены
вдоль одной прямой в одну сторону. В
этом случае работу силы можно определить
как .
Модуль силы по второму закону Ньютона
равен ,
а модуль перемещения при
равноускоренном прямолинейном движении
связан с модулями начальной и
конечной
скорости и ускорения выражением
.
Отсюда
для работы получаем
.
(19.1)
Кинетическая
энергия. Физическая
величина, равная половине произведения
массы тела на квадрат его скорости,
называется кинетической
энергией тела.
Кинетическая
энергия тела обозначается буквой Eк:
.
(19.2)
Тогда
равенство (19.1) можно записать в таком
виде:
.
(19.3)
Работа
равнодействующей сил, приложенных к
телу, равна изменению кинетической
энергии тела. Это
утверждение называют теоремой о
кинетической энергии.
Так
как изменение кинетической энергии
равно работе силы (19.3), кинетическая
энергия выражается в тех же единицах,
что и работа, т. е. в джоулях.
Если
начальная скорость движения тела
массой m равна
нулю и тело увеличивает свою скорость
до значения ,
то работа силы равна конечному значению
кинетической энергии тела:
.
(19.4)
Кинетическая
энергия тела массой m,
движущегося со скоростью ,
равна работе, которую должна совершить
сила, действующая на покоящееся тело,
чтобы сообщить ему эту скорость.
18
билет
Энергия
— это способность совершить работу.
Кинетическая — за счет движения. Например
— всадится машина в столб и совершит
работу по разборке на запчасти:) и
нагреву. Потенциальная
— способность совершить работу за счет
любых других свойств тела. Например —
подвесили гирю на веревке под потолок
— если отпустить она может совершить
работу, подняв что-то вверх. Или дрова
могут совершить работу по нагреву
котелка за счет того, что в них углерод
неокисленный, а может окислиться. То же
машина — она может сжечь свой бензин из
бака и разогнаться. Возможность совершить
какую-от работу за счет своиз внутренних
резервов или своего положения по
отношению к другим телам («на веревочке
под потолком») — потенциальная энергия.
19
билет
Закон
сохранения энергии — результат обобщения
многих экспериментальных данных. Идея
этого закона принадлежит М.В.Ломоносову
(1711 — 1765), изложившему закон сохранения
материи и движения, а количественная
формулировка закона сохранения энергии
дана немецким врачом Ю. Майером (1814 —
1878) и немецким естествоиспытателем Г.
Гельмгольцем (1821 — 1894).
Рассмотрим
систему материальных точек массами m1,
m2,
…, mn,движущихся
со скоростями v1, v2,
…,vn. Пусть F`1,
F`2 ,
…, F`n,равнодействующие внутренних
консервативных сил, действующих на
каждую из этих точек, a
F1 F2,
…, Fn — равнодействующие
внешних сил, которые также будем считать
консервативными. Кроме того, будем
считать, что на материальные точки
действуют еще и внешние неконсервативные
силы; равнодействующие этих сил,
действующих на каждую из материальных
точек, обозначим f1,
f2,
…, in. При v
<<c массы
материальных точек постоянны и уравнения
второго закона Ньютона для этих точек
следующие:
,
,
………………………..
Двигаясь
под действием сил, точки системы за
интервал времени dtсовершают
перемещения, соответственно равные dr1,
dr2,
…, drn. Умножим
каждое из уравнений скалярно на
соответствующее перемещение и, учитывая,
что dr1 =
v1 dt, получим:
m1(v1 dv1)
— (F‘1 + F1)
drl = f1 dr1,
m2(v2 dv2)
— (F‘2 + F2)
dr2 = f2dr2,
.
. . . . . . . . . . .
mn(vn dvn)
— (F‘n + Fn)
drn= fn drn,
Сложив эти
уравнения, получим
Первый
член левой части равенства
где dW есть
приращение кинетической энергии системы.
Второй член у (F’i+Fi)dri равен
элементарной работе внутренних и внешних
консервативных сил, взятой со знаком
минус, т. е. равен элементарному приращению
потенциальной энергии dU системы.
Правая
часть равенства
задает
работу внешних неконсервативных
сил, действующих
на систему. Таким образом, имеем
d(W+U)=dA
При
переходе системы из состояния 1 в
какое-либо состояние 2
т.
е. изменение полной механической энергии
системы при переходе из одного состояния
в другое равно работе, совершенной при
этом внешними неконсервативными силами.
Если внешние неконсервативные силы
отсутствуют, то из (13.2) следует, что
d(W+U)
= 0
откуда
W
+U = E =const
т.
е. полная механическая энергия системы
сохраняется постоянной. Полученное
выражение представляет собой закон
сохранения механической энергии: в
системе тел, между которыми действуют
только консервативные силы, полная
механическая энергия сохраняется, т.
е. не изменяется со временем.
Механические
системы, на тела которых действуют
только консервативные силы (внутренние
и внешние), называютсяконсервативными
системами. Закон
сохранения механической энергии можно
сформулировать так: в консервативных
системах полная механическая энергия
сохраняется.
Модель:
упругий удар.
Закон
сохранения механической энергии связан
с однородностью
времени,т.
е. инвариантностью физических законов
относительно выбора начала отсчета
времени. Например, при свободном падении
тела в поле сил тяжести его скорость и
пройденный путь зависят лишь от начальной
скорости и продолжительности свободного
падения тела и не зависят от того, когда
тело начало падать.
Существует
еще один вид систем — диссипативные
системы, в
которых механическая энергия постепенно
уменьшается за
счет преобразования в другие
(немеханические) формы энергии. Этот
процесс получил названиедиссипации (или рассеяния)
энергии. Строго
говоря, все системы в природе являются
диссипативными.
В
консервативных системах полная
механическая энергия остается постоянной.
Могут происходить лишь превращения
кинетической энергии в потенциальную
и обратно в эквивалентных количествах,
так что полная энергия остается
неизменной. Поэтому, как указывает Ф.
Энгельс, этот закон не есть просто
закон количественного сохранения
энергии, а закон сохранения и превращения
энергии, выражающий и качественную сторону
взаимного превращения различных форм
движения друг в друга. Закон сохранения
и превращения энергии — фундаментальный
закон природы,он
справедлив как для систем макроскопических
тел, так и для систем микротел.
В
системе, в которой действуют также
неконсервативные силы, например силы
трения, полная механическая энергия
системы не сохраняется. Следовательно,
в этих случаях закон сохранения
механической энергии несправедлив.
Однако при «исчезновении» механической
энергии всегда возникает эквивалентное
количество энергии другого вида. Таким
образом, энергия
никогда не исчезает и не появляется
вновь, она лишь превращается из одного
вида в другой. В
этом и заключается физическая
сущность закона
сохранения и превращения энергии —
сущность неуничтожимости материи и ее
движения.
20
билет
теория
XIX века, рассматривавшая строение
вещества, в основном газов, с точки
зрения трёх основных приближенно верных
положений:
-
все
тела состоят из частиц: атомов, молекул и ионов; -
частицы
находятся в непрерывном хаотическом движении
(тепловом); -
частицы
взаимодействуют друг с другом
путём абсолютно
упругих столкновений.
Основными
доказательствами этих положений
считались:
-
Диффузия
-
Броуновское
движение -
Изменение агрегатных
состояний вещества
В
современной (теоретической) физике
термин молекулярно-кинетическая теория
уже не используется, хотя он встречается
в учебниках по курсу общей физики. В
современной физике МКТ заменила
кинетическая теория, в русскоязычной
литературе —физическая
кинетика,
и статистическая
механика.
В этих разделах физики изучаются не
только молекулярные (атомные или ионные)
системы, находящиеся не только в
«тепловом» движении, и взаимодействующие
не только через абсолютно упругие
столкновения.
21
билет
Соотношение
p = nkT, |
связывающее
давление газа с его температурой и
концентрацией молекул, получено
в §3.2 для
модели идеального газа, молекулы которого
взаимодействуют между собой и со стенками
сосуда только во время упругих
столкновений. Это соотношение может
быть записано в другой форме, устанавливающей
связь между макроскопическими параметрами
газа – объемом V,
давлением p,
температурой T и
количеством вещества ν.
Для
этого нужно использовать равенства
|
Здесь N –
число молекул в сосуде, NА –
постоянная Авогадро, m –
масса газа в сосуде, M –
молярная масса газа. В итоге получим:
|
Произведение
постоянной Авогадро NА на постоянную
Больцмана k называется универсальной
газовой постоянной и
обозначается буквой R.
Ее численное значение в СИ есть:
R = 8,31 Дж/моль·К. |
Соотношение
| (*) |
называется уравнением
состояния идеального газа.
Для
одного моля любого газа это соотношение
принимает вид:
|
Если
температура газа равна Tн = 273,15 К (0 °С),
а давлениеpн = 1 атм = 1,013·105 Па,
то говорят, что газ находится при
нормальных условиях.
Как следует из уравнения состояния
идеального газа, один моль любого газа
при нормальных условиях занимает один
и тот же объем V0,
равный
V0 = 0,0224 м3/моль = 22,4 дм3/моль. |
Это
утверждение называется законом
Авогадро.
Для
смеси невзаимодействующих газов
уравнение состояния принимает вид
|
где ν1, ν2, ν3 и
т. д. – количество вещества каждого
из газов в смеси.
Уравнение,
устанавливающее связь между давлением,
объемом и температурой газа было получено
в середине XIX века французским
физиком Б. Клапейроном,
в форме (*) оно было впервые
записано Д. И. Менделеевым.
Поэтому уравнение состояния газа
называется уравнением
Клапейрона–Менделеева.
Следует
отметить, что задолго до того, как
уравнение состояния идеального газа
было теоретически получено на основе
молекулярно-кинетической модели,
закономерности поведения газов в
различных условиях были хорошо изучены
экспериментально. Поэтому уравнение (*) можно
рассматривать как обобщение опытных
фактов, которые находят объяснение в
молекулярно-кинетической теории.
Газ
может участвовать в различных тепловых
процессах, при которых могут изменяться
все параметры, описывающие его состояние
(p, V и T).
Если процесс протекает достаточно
медленно, то в любой момент система
близка к своему равновесному состоянию.
Такие процессы называются квазистатическими.
В привычном для нас масштабе времени
эти процессы могут протекать и не очень
медленно. Например, разрежения и сжатия
газа в звуковой волне, происходящие
сотни раз в секунду, можно рассматривать
как квазистатический процесс.
Квазистатические процессы могут быть
изображены на диаграмме
состояний(например,
в координатах p, V)
в виде некоторой траектории, каждая
точка которой представляет равновесное
состояние.
Интерес
представляют процессы, в которых один
из параметров (p,V или T)
остается неизменным. Такие процессы
называютсяизопроцессами.
Изотермический
процесс (T = const)
Изотермическим
процессом называют
квазистатический процесс, протекающий
при постоянной температуре T.
Из уравнения (*)состояния идеального
газа следует, что при постоянной
температуре T и
неизменном количестве вещества ν в
сосуде произведение давления p газа
на его объем V должно
оставаться постоянным:
|
|
Модель. |
На
плоскости (p, V)
изотермические процессы изображаются
при различных значениях температуры T семейством
гиперболp ~ 1 / V,
которые называются изотермами.
Так как коэффициент пропорциональности
в этом соотношении увеличивается с
ростом температуры, изотермы,
соответствующие более высоким значениям
температуры, располагаются на графике
выше изотерм, соответствующих меньшим
значениям температуры (рис. 3.3.1).
Уравнение изотермического процесса
было получено из эксперимента английским
физиком Р. Бойлем (1662 г.)
и независимо французским
физиком Э. Мариоттом (1676 г.).
Поэтому это уравнение называют законом
Бойля–Мариотта.
|
Рисунок Семейство |
Изохорный
процесс (V = const)
Изохорный
процесс –
это процесс квазистатического нагревания
или охлаждения газа при постоянном
объеме V и
при условии, что количество вещества ν в
сосуде остается неизменным.
Как
следует из уравнения (*) состояния
идеального газа, при этих условиях
давление газа p изменяется
прямо пропорционально его абсолютной
температуре: p ~ T или
|
|
Модель. |
На
плоскости (p, T)
изохорные процессы для заданного
количества вещества ν при
различных значениях объема V изображаются
семейством прямых линий, которые
называются изохорами.
Большим значениям объема соответствуют
изохоры с меньшим наклоном по отношению
к оси температур (рис. 3.3.2).
|
Рисунок Семейство |
Экспериментально
зависимость давления газа от температуры
исследовал французский физик Ж. Шарль
(1787 г.). Поэтому уравнение изохорного
процесса называется законом
Шарля.
Уравнение
изохорного процесса может быть записано
в виде:
|
где p0 –
давление газа при T = T0 = 273,15 К (т. е.
при температуре0 °С). Коэффициент α,
равный
(1/273,15) К–1,
называюттемпературным
коэффициентом давления.
Изобарный
процесс (p = const)
Изобарным
процессом называют
квазистатический процесс, протекающий
при неизменным давлении p.
Уравнение
изобарного процесса для некоторого
неизменного количества вещества ν имеет
вид:
|
где V0 –
объем газа при температуре 0 °С.
Коэффициент α равен
(1/273,15) К–1.
Его называют температурным
коэффициентом объемного расширения
газов.
|
Модель. |
На
плоскости (V, T)
изобарные процессы при разных значениях
давления p изображаются
семейством прямых линий (рис. 3.3.3),
которые называются изобарами.
|
Рисунок Семейство |
Зависимость
объема газа от температуры при неизменном
давлении была экспериментально
исследована французским
физиком Ж. Гей-Люссаком (1862
г.). Поэтому уравнение изобарного процесса
называют законом
Гей-Люссака.
Экспериментально
установленные законы Бойля–Мариотта,
Шарля и Гей-Люссака находят объяснение
в молекулярно-кинетической теории
газов. Они являются следствием уравнения
состояния идеального газа.
22
билет
Моделируется
процесс изобарного сжатия и расширения
идеального газа. Возможен выбор величины
внешнего давления. Текущие значения
параметров газа выводятся на экран.
Состояние газа указывается на графике
в координатах (V, T).
Изобарный
процесс –
это процесс квазистатического расширения
или сжатия вещества (в данном случае
идеального газа) при постоянном
давлении P.
На плоскости (V, T)
изобариные процессы при разных значениях
давления P изображаются
семейством прямых линий V~T (закон
Гей-Люссака).
Для одного моля идеального газа
|
где R = 8,31 Дж/(моль∙К)
– универсальная газовая постоянная.
Работа
газа при
изобарном расширении или сжатии
выражается соотношением
A = P (V2 – V1) = P ΔV. |
Первый
закон термодинамики для
изобарного процесса записывается в
виде
Q = U(T2) – U(T1) + P(V2 – V1) = ΔU + PΔV. |
Здесь U (T1) и U (T2) –
внутренняя энергия газа в начальном и
конечном состояниях, V1 и V2 –
начальный и конечный объемы. При изобарном
расширении Q > 0 –
тепло поглощается, и газ совершает
положительную работу. При изобарном
сжатии Q > 0 –
тепло отдается внешним телам. В этом
случае A < 0.
В
модели можно выбирать давление газа и
проводить процесс при выбранном давлении.
Приводится график зависимости V (T) для
изобарного процесса, выводится
энергетическая диаграмма, на которой
указываются количество теплоты Q,
полученной газом, произведенная
работа A и
изменение ΔU его
внутренней энергии.
При
помощи энергетической диаграммы вы
также можете убедиться, что при изобарном
расширении внутренняя энергия газа
увеличивается (при этом его температура
растет), и газ совершает положительную
работу. При изобарном сжатии температура
и внутренняя энергия уменьшаются, работа
газа отрицательна. Также из диаграммы
видно, что при расширении газ поглощает
тепло, а при сжатии – отдает окружающим
телам.
23
билет
Моделируется
процесс изохорного нагревания и
охлаждения идеального газа. Текущие
значения параметров газа выводятся на
экран. Состояние газа указывается на
графике в координатах (P, T).
Изохорный
процесс –
это процесс квазистатического нагревания
или охлаждения вещества (в данном случае
идеального газа) при постоянном объеме V.
На плоскости (P, T)
изохорные процессы при разных значениях
объема V изображаются
семейством прямых линий P ~ T (закон
Шарля).
Для одного моля идеального газа
|
где R = 8,31 Дж/(моль∙К)
– универсальная газовая постоянная.
В
изохорном процессе газ не совершает
работы:
A = 0. |
Первый
закон термодинамики для
изохорного процесса записывается в
виде
Q = U(T2) – U(T1) = ΔU. |
Здесь U(T1) и U(T2) –
внутренняя энергия газа в начальном и
конечном состояниях.
При
изохорном нагревании тепло поглощается
газом (Q > 0),
и его внутренняя энергия увеличивается.
При охлаждении тепло отдается внешним
телам (Q < 0);
внутренняя энергия газа уменьшается.
В
модели можно выбирать объем газа и
проводить процесс при разных объемах
газа.
Приведен
график зависимости P(T) для
изохорного процесса, выводится
энергетическая диаграмма, на которой
указываются количество теплоты Q,
полученной газом, произведенная газом
работа A и
изменение ΔU его
внутренней энергии.
Из
энергетической диаграммы видно, что
при изохорном процессе работа газа
равна нулю, и все полученное тепло
затрачивается на изменение внутренней
энергии газа.
24
билет
Как правильно прочитать формулу мощности : «Значение мощности прямо пропорционально работе и обратно пропорционально промежутку времени» или «Значение мощности численно равно работе, совершенной за единицу времени» ?
——
Помогите, пожалуйста. Даю 20 баллов.